ar X iv : m at h / 02 02 11 4 v 1 [ m at h . G N ] 1 2 Fe b 20 02 ON FINITE - DIMENSIONAL MAPS II
نویسنده
چکیده
Let f : X → Y be a perfect n-dimensional surjective map of paracompact spaces and Y a C-space. We consider the following property of continuous maps g : X → Ik = [0, 1], where 1 ≤ k ≤ ω: each g(f(y)), y ∈ Y , is at most n-dimensional. It is shown that all maps g ∈ C(X, In+1) with the above property form a dense Gδ-set in the function space C(X, I n+1 ) equipped with the source limitation topology. Moreover, for every n + 1 ≤ m ≤ ω the space C(X, Im) contains a dense Gδ-set of maps having this property.
منابع مشابه
ar X iv : m at h / 06 02 37 1 v 1 [ m at h . A G ] 1 7 Fe b 20 06 Braid Monodromy of Hypersurface Singularities
متن کامل
ar X iv : h ep - e x / 02 02 02 3 v 1 1 1 Fe b 20 02 RESULTS FROM HIGH ENERGY ACCELERATORS
We review some of the recent experimental results obtained at high-energy colliders with emphasis on LEP and SLC results.
متن کاملar X iv : h ep - t h / 01 06 03 1 v 4 2 1 Fe b 20 02 M - Theory
We construct an eleven-dimensional superspace with superspace coordinates and formulate a finite M-theory using non-anticommutative geometry. The conjectured M-theory has the correct eleven-dimensional supergravity low energy limit. We consider the problem of finding a stable finite M-theory which has de Sitter space as a natural ground state, and the problem of eliminating possible future hori...
متن کاملar X iv : m at h / 05 02 05 3 v 2 [ m at h . G N ] 2 3 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES
In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.
متن کاملar X iv : m at h / 02 06 13 5 v 1 [ m at h . D G ] 1 3 Ju n 20 02 PROJECTIVE PLANES , SEVERI VARIETIES AND SPHERES
A classical result asserts that the complex projective plane modulo complex conjugation is the 4-dimensional sphere. We generalize this result in two directions by considering the projective planes over the normed real division algebras and by considering the complexifications of these four projective planes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002